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ABSTRACT 
 

The utilization of small-unmanned aerial systems (sUAS) as a cheap, effective 

complement to other assessment tools is imminent in the field of coral reef ecology.  

Here, we describe the current status of sUAS in the field of coastal monitoring, and 

introduce the utilization of low-altitude sUAS assessments for coral reef research using 

proof-of-concept results and completed work describing the distribution of coral 

bleaching across several patch reefs in Kāneʻohe Bay, Hawaii. Overlapping sub-

centimeter reef imagery collected during the 2015 coral bleaching event was used to 

construct complete high-resolution reef images of four Kāneʻohe Bay patch reefs located 

in “long residence time” and “short residence time” flow regimes. The spatial 

distributions of bleached and paled corals were assessed in relation to coastal stressors 

(sedimentation rates, salinity and phosphate concentrations). Results support the notion 

that phosphate, an important inorganic nutrient, differed significantly between “closer to 

shore” and “further from shore” reefs instead of between previously determined flow 

regimes. Mean phosphate concentrations and salinities were both significantly correlated 

to unhealthy (bleached or paled) coral cover. When assessing the environmental 

conditions in close temporal proximity to image collection, only salinity had a strong 

negative correlation with the cover of unhealthy coral. Paled, bleached, and healthy coral 

on all four reefs were significantly clumped spatially, although bleached corals had the 

largest mean distances between affected colonies. This project provides valuable insight 

into the relationships between Kāneʻohe Bay patch reefs and coastal stressors at 

previously unexplored spatial scales, and demonstrates the effective use of sUAS surveys 

in the field of coral reef science. 
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CHAPTER I 
 

Unmanned Aerial Systems for Coral Reef Science: An Introduction and Case Study 

(Submitted to the Journal of Coastal Research) 

Introduction  
Jacques Cousteau envisioned that technology such as satellites, aircraft, 

instrumented buoys, and other manned or unmanned devices might someday replace the 

inefficient and expensive method of gathering ocean data via ships. While many 

oceanographic projects have already adopted the use of such technologies to provide 

more accurate, comprehensive data about the world’s oceans, we are only just beginning 

to explore the applications of new technologies for biological marine sciences. Coral 

reefs are biodiversity hotspots that are vital to the function of global economic and 

biologic processes. Due to the inherent heterogeneity, size, and, in some cases, 

remoteness of coral reefs, it is difficult to routinely monitor their dynamics at functionally 

important spatial scales. We argue that small-unmanned aerial vehicles (sUAS) are 

efficient, cost-effective tools for monitoring fine-scale reef dynamics over a wide range 

of spatial (cm-km) and temporal scales (hourly-annually).  

Coral reefs provide a variety of ecosystem functions ranging from essential fish 

habitats to natural breakwaters that are vital to the sustainability of countless coastal 

communities throughout the tropics. From an economic perspective, reefs, which sustain 

these ecosystem services and thriving tourism industries, have an estimated global value 

of $29.8 billion per year1. Coastal and global stressors have an additive, negative impact 

on coral health2. Global stressors such as elevated temperatures and ocean acidification, 

and coastal stressors such as runoff, pollution, tourism overuse, and unsustainable fishing 
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reduce coral reef resilience, promote algal overgrowth and increase coral mortality3–7. As 

we continue to populate coastlines and change the global climate at a rapid rate, corals 

may not be able to adapt8. In order to help mitigate the steadily declining trend in global 

coral health, it is imperative that we collect information at biologically relevant spatial 

scales to monitor reef health and understand how global and local stressors impact reef 

dynamics. This information will help create and/or amend management strategies that 

will more effectively protect these fragile yet vital marine ecosystems from further 

degradation.  

Information can be collected on various spatial scales to answer questions that 

range from coral reproductive physiology to regional reef resilience mapping9–11. For 

management applications, it is important to understand how a stressor can impact a reef 

at various spatial scales. Although observing single polyp or colony responses to such 

stressors is useful to understanding physiological processes, these do not provide a 

comprehensive view of the organism’s functioning within its ecosystem. Therefore, it is 

important to assess the health of that single polyp or coral colony within the reef or 

ecosystem context.  

The way we collect reef information depends on the spatial scale in question. The 

two general ways we collect reef information are via in situ or remote sensing techniques. 

After reviewing nine methods used for in situ surveys, Jokiel et al. (2005) identified 

underwater photo transects as the most efficient method at collecting high-resolution reef 

information at local scales12. Jokiel et al. (2005) also brought attention to the importance 

of power analysis and large sample sizes for methodologies used in monitoring or 

assessment projects12. Ideally, an optimal method would document higher species counts, 
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moderate area coverage, and low variance to increase the survey accuracy12. To further 

this point, reef community structure is extremely heterogeneous over scales of 

centimeters to hundreds of meters13. Therefore, conducting an in situ assessment over a 

fraction of one reef will not necessarily be an accurate representation of the reef as a 

whole. Additionally, some reefs are situated where remoteness, weather conditions, or 

reef topography prohibit the safe, routine collection of in situ reef information. Over the 

past two decades, the development of remote sensing techniques has allowed marine 

scientists to efficiently collect large-scale reef information in such environments14.  

Direct remote sensing is defined as the ability to detect individual organisms, 

species, assemblages, or ecological communities from satellites or airplanes15. This 

technique has been applied to coastal marine assessments for sea level rise, 

baseline/routine monitoring, and environmental sensitivity mapping of sea grasses, 

mangroves, algae, aquaculture, and coral reefs16. It is important for remote sensing 

systems to spatially and spectrally resolve functional reef bottom-types such as sand, 

coral, sea grasses, algae, and rubble17. Current methods use spectral classifications to 

quantitatively discriminate between substrates via the distinct spectral signature 

characteristics of each substrate type15,18,19 .   

Spectral classification is the process of categorizing image pixels into classes, or 

into a fractional representation of the relative contributions from different spectral 

endmembers20. Imaging with multi-spectral or hyper-spectral sensors is capable of 

simultaneously collecting information on tens or hundreds of separate bands of light over 

a large range of wavelengths to collect information on water properties, bathymetry and 

benthic composition18,21,22. This technology is especially important in reef environments, 
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as it allows for differentiation between very small changes in spectral reflectance, and can 

therefore tease apart subjects that have similar spectral properties. For instance, collecting 

narrow-band (20 nm), multispectral imagery between 480 and 540 nm can be used to 

distinguish between functionally distinct corals and algae that are visually indiscernible 

in RGB remote sensing data20. When used in situ, spectral sensors can give reef scientists 

the ability to assess coral pigment levels and symbiont densities19,24. However, the coarse 

resolution of these sensors on airborne and satellite remote sensing platforms, and the 

poor spatial resolution inherent with multispectral sensors in comparison to RGB sensors, 

do not allow for the fine-scale spatial discrimination between reef components that is 

required for some coral reef applications20,25.  

Remote sensing surveys have contributed enormously to the characterization of 

coral reefs by providing previously unattainable large-scale reef information26. However, 

there are temporal, spatial, and monetary limitations that are particularly apparent when 

trying to answer certain biological questions. Costs of obtaining multiple sets of imagery, 

the temporal gap between satellite passes for repeat surveys, radiometric corrections 

necessary to standardize image color and brightness, and the inability to resolve to some 

biologically relevant spatial scales inhibit the use of remote sensing techniques to answer 

questions that require colony-level resolution over large areas 16,26.  

Considering that in situ and remote sensing techniques are collecting reef 

information at the two edges of the spatial spectrum, another methodology must be 

utilized to collect intermediate-scale reef information. In order to obtain high resolution, 

large-scale reef information, RGB imagery or spectral information must be collected at 

lower altitudes.  



	 	5	

Unmanned aerial platforms were first used to map reef environments in 1978 with 

the use of helium balloons, and later with kites in 198227,28. Both of these methods 

utilized tethered aerial platforms equipped with a camera and trigger mechanism to obtain 

consecutive, overlapping low altitude aerial images of reef areas at an altitude of 40-50 

m27,28. Although these techniques were advanced for their time, the amount of area 

mapped was limited to the length of the tether and mobility of the kite operator to cover 

as much ground as possible. Current unmanned aerial platforms are self-powered, 

untethered systems that allow for more freedom in low altitude aerial mapping efforts.  

UAS 
Unmanned aerial systems, UAS, or drones, offer a viable alternative to traditional 

platforms for acquiring high-resolution remote-sensing data at lower cost, increased 

operational flexibility, and greater versatility. The recent surge in commercial production 

of small UAS’s (sUAS) has increased the accessibility of these platforms to various 

hobbyist, commercial, and research applications. sUAS are defined as fixed wing or 

multi-rotor aircraft that weigh less than 25 kg and are flown without a pilot in the 

cockpit29,30.  

The quad-copter is a popular, stable, multi-rotor design that uses two sets of 

identical fixed-pitch propellers for lift and propulsion. Control of vehicle motion is 

achieved by altering the rotation rate of the rotor discs, and an electronic control system 

and sensor arrays stabilize the aircraft. The four-rotor design allows quad-copters to be 

relatively simple in design yet highly maneuverable and reliable. Compared to a 

traditional helicopter, the lack of mechanical linkages otherwise needed to vary the pitch 

angle of the rotor blade simplifies the design and maintenance of the vehicle; the use of 

smaller and lighter propellers improves the safety of the vehicle23. The need for aircraft 



	 	6	

with greater maneuverability and hovering ability due to limited launch and landing space 

during field operations has led to a rise in quad-copter use in environmental monitoring 

and mapping30. Quad-copters have a major advantage over fixed-wing aircraft because 

they can hover, fly at slow speeds, and change altitude with no horizontal motion30.  

This allows for the collection of very low altitude imagery with minimal forward motion 

distortion and easily enables mapping at consistent spatial resolutions. However, due to 

aerodynamic limitations, quad-copter and other multi-rotor designs have shorter flight 

capabilities than fixed-wing aircraft.  

Fixed wing sUAS refer to vehicles configured similar to a passenger airplane. 

Typically they are composed of a fuselage, a main wing and a thrusting propeller. Many 

configurations of fixed wings exist. One popular configuration is the “flying wing,” 

composed of one large wing blended with a fuselage in the middle that holds electronics 

and sensors. Another popular design is the “conventional” configuration, which in 

addition to a main wing and fuselage uses an “empennage,” or tail to control the pitch 

and yaw rotations. In the context of mapping, a primary strength of the fixed wing UAS 

is its endurance. Typically a sUAS fixed wing aircraft can fly between 45 minutes and 

120 minutes. This is a critical feature needed for mapping large areas such as coral reefs.  

A main challenge for the deployment of fixed wing UAS is the operational 

complexity associated with launching and landing. Launching a small fixed wing craft is 

generally simple, and can be accomplished by throwing it like a paper airplane. Larger 

fixed wings need either a runway, or more commonly a catapult. Landing fixed wings 

regardless of size is generally the most difficult part of the mission and requires the most 

expertise. In order to safely land, many considerations are made for approaching a 
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landing site. First, the distance needed to descend and align the aircraft with a landing 

zone can be quite long, affecting the flight path and the pilot’s focus for several minutes 

before the actual landing occurs. Second, the effect of environmental factors like wind 

adds complexity by requiring a pilot to choose an approach heading into the wind, or 

landing with a side-slip. Third, to account for all the variables involved, a long area of 

(dry) land is needed to receive the vehicle during touch-down. Compared to a multi-rotor 

craft, the complexity of this operation is many times greater and is typically the major 

barrier to entry for a new operation. This would explain why fixed wing deployments are 

still rare in ocean research applications. 

sUAS are easily transportable aerial platforms that can carry lightweight sensors 

(~3 kg) and fly at low altitudes with a high degree of control under autonomous flight. 

sUAS guided by autonomous flight systems have the capacity to fly “low and slow” to 

obtain clear, hyperspatial (<10 cm pixel size) imagery of targeted areas with minimal 

atmospheric noise29,31. Improvements in the design of flight control systems have 

transformed sUAS platforms into research-grade tools capable of acquiring high-quality 

images of geophysical/biological dynamics30.  

Much like the use of airborne sensors in the early 2000s, the scientific community 

is starting to understand the potential for UAS-mounted sensors for assessing tropical 

environmental resources. sUAS platforms were first used by wildlife biologists for 

monitoring and inventorying wildlife in areas inaccessible by foot32. Because revisit 

times are determined by the operator as opposed to fixed satellite revisit times, geologists 

utilized sUAS to conduct fine-scale temporal assessments to detect landslides, map fault 

zones, and volcanic activity32,31. The lower costs, human risks, ecological footprint, 
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radiometric corrections, and improved spatial resolution compared to traditional remote 

sensing techniques have led to the use of sUAS in several fields of coastal marine 

ecology including wildlife surveys, wetland assessments, coastal erosion assessments, 

and coral reef surveys30,33–36.  

Most of the examples above use sUAS to fly high altitude (100-300 m), high 

speed operations to collect information about large areas. At this height, depending on the 

sensor and lens used, image resolution obtained is 3-10 cm. Although this is considered 

high resolution for aerial imagery, the spatial resolution required depends on the study 

subject and biological question at hand, and therefore varies by project. Coral reef 

surveys that require species-specific information about coral and algal benthic 

components should resolve down to the coral colony scale. Coral colony size can vary 

significantly between species and between individuals of the same species, so it is 

important to collect imagery at the finest resolution possible in order to identify as many 

individual coral colonies or algal patches as possible. At lower altitudes, flights become 

less efficient, as the area photographed decreases, and the sensor must travel at slower 

speeds to collect non-blurry images. Additionally, at very low altitudes (~10-12 m) 

propeller turbulence can impact the water state and produce distortion artifacts. Our trial 

and error has determined that for low-end multi-rotor sUAS such as the DJI Phantom 

series, a “happy medium” altitude of 15-20 m provides 0.8-1 cm spatial resolutions using 

a 94° field-of-view RGB sensor. While this altitude provides adequate spatial resolution 

to easily collect colony-level information with the DJI Phantom series, minimum 

altitudes for acquiring such spatial resolution vary by platform size, and sensor type, 

quality, and zoom.  
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There is huge potential to utilize this platform for shallow-water benthic 

ecological surveys. Below is the workflow we utilized to produce a geo-referenced, sub-

centimeter orthomosaic of a 50,000m2 reef area with sUAS.  

 When planning a UAS reef survey, it is important to be knowledgeable of UAS 

capabilities, sensor options, flight planning software, and analysis tools that are available 

to answer your question. To illustrate this process, we will use the reef survey mentioned 

above as an example. While some of the methods below apply broadly to mapping efforts 

terrestrial or marine, which have been used in work such as Hodgson 2016, it is important 

to distill and describe a comprehensive workflow example, as it has not yet been 

accomplished in the peer-reviewed literature37.   

Choosing Survey Techniques 
A survey was conducted to determine the population size and spatial distribution 

of the two dominant coral species, Porites compressa and Montipora capitata, on several 

patch reefs throughout Kaneohe Bay, Hawaii. Patch reefs in Kaneohe Bay range from 

1000 m2 to 50,000 m2, with reef flats less than 2 m below sea level, and are located 

between 300 m and 3000 m from the nearest shore38. While some of these intermediate to 

small reefs could, and have, been surveyed manually using boat-launched snorkel 

methods, it is physically, monetarily and temporally exhaustive to conduct a spatially 

comprehensive survey of these reefs using such techniques. Additionally, snorkel surveys 

do not necessarily facilitate the actual mapping of all colony locations on each reef, as 

data are often not collected continuously, but rather at categorical intervals determined by 

the specific survey protocol39. A continuous mapping effort requires an aerial platform 

that is capable of launching from a small vessel, has a long battery life, and can carry a 

gimbaled, small, lightweight RGB sensor that faces at-nadir. While there are currently 
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many commercially-available multi-rotor sUAS, many are not optimized for field 

mapping efforts and are either too big to land on a small vessel, utilize non-gimbaled 

cameras that do not face at-nadir, or have flight times of less than 20 minutes. The DJI 

Phantom 3 Professional was employed for this project as it fits most of the criteria 

mentioned above. 

Sensor Specifications 
While some multi-rotor sUAS now come equipped with a built-in, gimbaled RGB 

sensor, others require the purchase of a separate camera and gimbal assemblage. Ideal 

cameras will have high megapixel sensors and wide-angled lenses to have the ability to 

capture maximum detail with maximum area coverage. However, post-processing steps 

to generate orthomosaics are computer intensive, so larger images files require longer 

processing times with limited resolution benefits. Generally, 12 megapixel cameras 

provide enough resolution while not being too computing intensive. It is also advised to 

avoid wide-angled lenses or cameras that have significant internal geometric errors such 

as fish-eye distortion. Although these distortions can be corrected using various software 

options, image accuracy is still compromised in comparison to “flat” lenses.  

Flight Planners 
There are several flight planning systems available that enable pre-programming 

of waypoints for automated flights. These systems allow for the precise control of 

location, speed, direction, and height of the platform during the flight in order to obtain 

the necessary resolution imagery of the area of interest. Flight planners such as eMotion, 

Mission Planner, DatuFly, and Drone Deploy vary in compatibility and ease-of-use, but 

all use similar interfaces to create flight plans on user-friendly satellite map layers, and 

all allow the operator to monitor flight paths in real time on laptops, smartphones, or 



	 	11	

tablets. Some flight planning applications have the ability to upload flight plans to cloud 

servers, which makes it possible to create flight plans on one device and execute the 

flight on a different, field-optimized device.  

Field Operations 
Flight operations vary depending on reef proximity to land. If possible, it is 

always desired to launch and land the aircraft from shore. However, if the targeted reef is 

out of range of the remote control, or if reducing transit flight time can dramatically 

increase survey flight time, then launching from a boat is desirable. Boat operations 

require an open area either on the bow or stern, where the aircraft can launch and land 

either from the deck or by hand, if necessary. If compass calibrations are necessary, they 

should be performed before leaving shore, as metal on the boat can interfere with the 

compass. Internet connection is required to run the pre-planned flight plan unless it has 

been saved on a smartphone or tablet. 

The aircraft is launched in autopilot mode using the flight planning application. 

Although not always required, it is beneficial to have a spotter maintain visual contact 

with the aircraft during the mission while the pilot monitors flight status on the device. 

Lost-connection protocol varies by flight planner but usually results in the aircraft 

continuing its programmed flight, as the waypoint data is loaded into the aircraft prior to 

takeoff. Although most modern sUAS will automatically set the “home location” as the 

launch coordinates, landing using the home coordinates is ill-advised on a floating vessel, 

as vessel location is constantly changing. Rather, taking manual control to land the 

aircraft on a flat surface or by hand is recommended.  
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Post-Processing 
Depending on the flight planner, camera settings are either automated and 

controlled by the flight planning software or manually controlled by the pilot. When 

collecting still imagery, it is important to set the camera to a high frame rate capture in 

order to collect as much overlap across the y- axis between images as possible. If 

collecting video, it is important to utilize at least 1080p in order to maintain sufficient 

image quality. Still images can be batch edited to standardize image color and brightness 

to eliminate streaking or color inconsistencies. Video can be broken down into discrete 

single images and edited as above using image-processing software such as Adobe 

Photoshop and Lightroom. Software such as Agisoft Photoscan, which has been used 

successfully in terrestrial aerial mapping and in situ coral reef mapping, uses structure 

from motion (SfM) algorithms to estimate camera location at the point of each image’s 

collection, then combines adjacent images within a scene to create orthomosaic models of 

a complete scene40–42. SfM techniques require ~60% overlap between images in both the 

x and y axes in order to produce accurate, undistorted orthomosaics42.  

Geo-referencing 
In order to obtain accurate spatial and geographic information from the 

orthomosaics, it is necessary to geo-reference the composite image to a map coordinate 

system. Newer sUAS may have integrated sensors that embed geographic information 

into each image file, which yields a relatively straightforward georeferencing process for 

the orthomosaic. However, the GPS information collected by the UAS may not be as 

precise as desired. Therefore, it is always beneficial to manually geo-reference the mosaic 

using ground control points (GCPs) and GIS software such as ArcMap. Terrestrial 

georeferencing techniques use GCPs in addition to base stations, which collect GPS 
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coordinates of one location over an extended period of time to obtain a precise (5-10mm) 

GPS location43. While utilizing a similar system would decrease spatial error while 

georeferencing, it may not be feasible to deploy such equipment on remote reef areas. 

Temporary ground control points can be used to collect GPS coordinates across the reef. 

The GCPs must be visible in the mosaic to be effective in the georeferencing process. If it 

is necessary to compare sUAS imagery to common satellite products or to other sUAS 

imagery, it may be beneficial to geo-reference the aerial imagery visually by visually 

matching reef mosaics with satellite imagery.  

Ground-Truthing 
It is important to verify the accuracy of the aerial product via in situ ground-

truthing. It is possible to conduct rapid in situ ground-truth assessments of small reef 

areas via video or photo imagery collected along a transect line. The transect line must be 

identifiable in the aerial imagery as a physical structure (transect tape or rope) or a series 

of GPS locations in order to obtain an absolute comparison of images of the same reef 

area collected via aerial and in situ methods. Another, more rapid alternative is to deploy 

several 1 m × 1 m quadrats onto the reef prior to the UAS flight, then collect in situ 

imagery of each quadrat post-flight. This allows for a side-by-side comparison of the 

aerial and in situ imagery.  

Results   
 Using this workflow, we were able to collect colony-level reef imagery of a 

50,000 m2 reef within 30 minutes, and create a geo-referenced orthomosaic with sub-

centimeter resolution (Figure 1.1).   
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Applications  
Reef information collected using sUAS can be used to assess various metrics that 

are used as proxies to determine reef health, such as assessing changes in benthic 

community structure, size structure, and spatial range over time8,17,44. Additionally, UAS 

reef surveys can provide a large, and sometimes complete portion of a sample population, 

and thus describe spatial patterns that go undetected when using in situ surveys31. Such 

spatial patterns include species distributions, disease coverage, and bare substrate 

availability. This information provides a better understanding of reef dynamics and can 

help efficiently locate suitable substrate for coral restoration efforts. sUAS are an ideal 

tool for management organizations that are in need of cheap, accurate and unbiased tools 

to efficiently survey large reef areas. Additionally, the intermediate spatial scale of sUAS 

data can aid in a seamless integration between reef information collection platforms. 

sUAS data effectively close the spatial gap between traditional remotely sensed and in 

situ reef data. This added layer of information has potential to improve the spatial 

accuracy of models that aim to predict the future of coral reefs in this changing climate.  

sUAS applications are not limited to strict science. Education and public outreach 

about coral reef issues are necessary in order to inform those outside the coral reef 

scientific community about important findings and ways they can have direct impacts on 

coral reef health. sUAS are becoming an essential tool for capturing photography and 

video of subjects from a new perspective, and can be used to create dynamic, captivating 

imagery of coral reefs that will increase audience viewership of important coral reef 

findings and adjacent environmental causes. sUAS can provide a source of entertainment 

and stimulating education for students interested in various aspects of STEM that range 

from engineering, aircraft design, mapping to biological applications. Students can work 
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collaboratively on projects that involve designing, building sUAS, and applying these 

tools to produce useful, tangible results that can impact their local environment.  

Further development of low-cost sUAS that can perform automated flight plans 

and software capable of cloud based processing and analysis of imagery can enable the 

integration of citizen science data collection efforts at scales and qualities previously 

unattainable. The Nature Conservancy (TNC) has applied the use of sUAS to citizen 

science work to document the impact of an El Niño storm season which brought 

increased erosion, flooding, and storm damage to the California coastline. “Phones and 

Drones” connected sUAS users to the flight planning and image processing software 

Drone Deploy, a cloud-based processing system that uploaded and processed aerial 

imagery into spatially accurate maps, which in turn were stored and used by TNC to 

document the impacts of an El Niño storm season. A similar workflow is possible for 

coastal communities that wish to be more involved with assessing the health of their local 

reefs. This would allow frequent, community-level coral reef assessments across the 

globe.  

Limitations 
Although there are many benefits to incorporating UAS surveys in coral reef 

science, there are still some limitations that are inherent with remote sensing of benthic 

habitat through water. Atmospheric radiometric corrections, which are a necessity when 

processing data collected from satellite and aircraft, are not as important for UAS surveys 

as there is less atmospheric light scattering between the object and the sensor due to the 

low altitude platform. However, low altitude remote sensing evokes other issues that 

must be addressed. As the distance between the sensor and the substrate decreases, water 

artifacts such as distortions from waves become more pronounced. High frequency waves 
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such as wind-generated waves (0.1 – 2s periods) are particularly disruptive, inhibiting the 

collection of accurate spatial data at the colony level, and make benthic classifications 

challenging. In order to reduce the amount of wind-wave distortions, it is necessary to 

collect imagery on ultra low-wind days (1-7 KPH) or in protected bays where the fetch is 

insufficient to produce substantial ripples. Alternatively, Chirayath et al. (2016) introduce 

a novel mathematical approach that utilizes the magnification distortion produced by 

wave peaks to magnify the target benthos while eliminating wind-wave distortions36. This 

technique increases the number of possible survey days and locations beyond calm, 

protected environments, and it increases the spatial resolution over uncorrected imagery 

4-10 fold.  

Another limitation is the current lack of automated classification systems for 

high-resolution aerial RGB imagery. Due to the amount of area targeted with sUAS 

surveys, comprehensive manual benthic classifications are time intensive. Although it is 

possible to distinguish between live coral and sand, the heterogeneity of both color and 

morphology within and between coral species makes classifications at the species level 

challenging when limited to RGB channels. As with standard remote sensing techniques, 

the use of multi- and hyperspectral sensors on sUAS has potential to vastly improve the 

efficiency and accuracy of benthic classifications20.  

Spectral imaging cannot only help classify benthic components, but also 

potentially characterize components within the coral holobiont. Spectral signatures have 

been used to determine algal pigment concentrations, and this approach is a noninvasive, 

time-, and cost-efficient technique used to gain accurate pigment concentration values for 

a large number of samples 21,21,24,45–47. This technique in combination with sUAS 
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platforms could potentially determine pigment concentrations of algal symbionts located 

within the coral host across reefscapes. This information could be used to monitor fine-

scale, pre-mortality coral health metrics that can provide new insight to the fine-scale 

dynamics of coral physiology. There are currently several companies that offer 

hyperspectral sensors designed for use on sUAS. While prices are still high, advances in 

technology will continue to make sensors more powerful and cost-effective.  

FAA Regulations 
Recent strides in technology have increased the accessibility of sUAS for 

hobbyist, commercial, industrial and, research use alike by decreasing prices and 

improving usability. The increased presence of sUAS in National Air Space (NAS) has 

caused the Federal Aviation Administration (FAA) to rethink the regulations on sUAS 

operations. Previous to May 4, 2016, educational or research use of sUAS was considered 

commercial operation, which required 333 exemption licenses that were costly and time 

consuming to obtain, and required the sUAS operator to possess a manned aircraft pilots 

license (U.S Government Publishing Office: Title 14, Chapter I, subchapter C, Part 

45,47,61,91).  

 The May 4 2016 memorandum clarified that sUAS can be operated under 

hobbyist rules at educational institutions and community-sponsored events, provided the 

roperator is not compensated directly or indirectly for operating the aircraft48. This ruling 

primarily focuses on promoting the use of sUAS for STEM education and limits faculty 

use of the aircraft to “secondary or incidental” to student control. These activities do not 

require FAA authorization if the aircraft is restricted to several regulations. Some of the 

more important regulations state that “the aircraft must be operated in a manner that 

doesn’t interfere with and gives ways to any manned aircraft; when flown within 5 miles 
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of an airport, the operator of the aircraft provides the airport locator and the airport air 

traffic control tower (when the facility is available) with prior notice of the operations. 

Operators flying from a permanent location within the 5-mile radius should establish 

mutually agreed upon operating procedures with the airport operator and airport air traffic 

controller”48. For the fieldwork detailed in this review, a letter of agreement (LOA) 

between the sUAS operating institution (HIMB) and Marine Corps Base Hawaii (MCBH) 

was required to conduct sUAS operations, as the targeted reefs are located inside the 5-

nautical mile radius of the (MCBH) airspace. Notification protocol for this LOA includes 

number and model of aircraft, planned flight location, altitude, and time, and real time 

contact information. 

Also important is the standard protocol for the sUAS under lost-link situations 

and, if possible, modification of the protocol to reduce possible interactions between 

manned and unmanned aircraft. The sUAS operator must notify the air space controller at 

least 72 hours prior to planned flight time via email or phone call and must contact the air 

space controller an hour prior to operations, and again after operations end. For more 

information on this memorandum and an LOA template, please see supplemental 

information.  

If researchers plan to utilize sUAS for compensated work, a commercial license is 

required. As of August 29, 2016, the FAA instituted U.S. Government Publishing Office: 

Title 14, Chapter I, subchapter C, Part 107, which revises the certifications and 

regulations required for commercial sUAS operations in an effort to further integrate 

UAS into the NAS49. Important points are as follows: 1) Operations are limited to visual 

line of sight during daylight and civil twilight. 2) Maximum aircraft altitude is 400 ft at 
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Ground Level (AGL) or within 400 ft of a structure. 3) Aircraft must operate under a 

maximum speed of 100 mph. 4) The person operating a sUAS must either hold a Remote 

Pilot Certificate (RPC) with a sUAS rating or be under the direct supervision of a person 

with a RPC50. 5) To qualify for a RPC, a person must “Be at least 16 years old, 

demonstrate aeronautical knowledge by either passing an aeronautical knowledge test, or 

hold a part 61 pilot certificate other than a student pilots license, and complete a flight 

review within the previous 24 months, and complete a sUAS online training course”50. 

While some of these regulations may sound prohibitive, the ruling also states “Most of 

the restrictions discussed above are waivable if the applicant demonstrates that his or her 

operation can safely be conducted under the terms of a certificate of waiver.” This is 

especially applicable to coral reef researchers that are planning to operate in restricted 

airspace over national parks, marine sanctuaries, and within 5 nm of an airport. While the 

FAA’s job is to keep the NAS safe for both manned and unmanned aircraft, sUAS 

operators should understand that it is possible to waive regulations on a case-by-case 

basis for operations that will have a low risk of impacting NAS safety.  

Conclusion  
Considering the very recent introduction of UASs into environmental and 

conservation sciences, there have been massive advancements of hardware and software 

that have allowed for the improved efficiency of data acquisition and quality of results. 

The high degree of versatility of sUAS makes them an ideal tool for reducing costs and 

increasing time efficiency while producing high-resolution data that has not been possible 

with previous aerial survey tools. The continued development of high endurance sUAS 

platforms, accurate autonomous software, and small, powerful sensors, and new, more 

appropriate airspace regulations will continue to push the boundaries of the amount and 
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type of information we can collect about coral reefs. The development of efficient, 

accurate monitoring techniques is a vital component for increasing our ability to 

understand and protect coral reefs. We believe that sUAS can and will play a major role 

in providing important information about nuanced coral reef dynamics that will inform 

management decisions, capture the attention of the general public, and inspire innovation 

and interest in students about coral reef science. 
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CHAPTER II 
 

Assessing the spatial distribution of coral bleaching in response to coastal stressors with a 

low-altitude remote-sensing platform 

To be submitted to Coral Reefs 

Introduction 
Coral reefs are productive, diverse ecosystems that play a vital role in natural and 

human networks throughout the tropics and subtropics. Coral reefs provide an abundance 

of physical and biological benefits to coastal economies through tourism, fisheries, and 

coastal protection1,51  but are in global decline due to a variety of acute and chronic 

stressors originating from both natural and anthropogenic sources52,53. Natural, local 

stressors such as sedimentation, nutrient input, and freshwater can have profound effects 

on reef health54,55. Additionally, anthropogenic manipulation of coastal systems through 

agriculture, river modification, and urban development can degrade local environmental 

conditions through the chronic, unnatural input of local stressors into coastal waters56–58. 

Chronic exposure to local stressors may result in coral mortality and sub-lethal effects 

such as disease, altered growth, reduced regeneration, lowered reproduction and 

recruitment rates, and an overall reduction in reef resilience59. Loss of resilience reduces 

the system’s ability to resist and recover from acute events such as severe storms, intense 

freshwater exposure, or coral bleaching60. A chronically stressed reef system is likely to 

recover slowly, if at all, after an acute event54. Faster-growing macroalgae can out-

compete the affected coral colonies, which can lead to increased colony mortality, 

ecosystem degradation and ultimately, regime shifts to a macroalgal dominated 

system53,61.  
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Coral Bleaching 
Coral bleaching occurs when a coral is exposed to abnormal environmental 

conditions and subsequently expels its symbiotic dinoflagellate algae62,63. Devoid of 

symbionts, scleractinian corals have a significantly reduced energy budget, which impairs 

coral growth, reproduction, capacity to resist disease, and ability to defend against space 

competitors such as algae64. This mechanism increases risk of coral-algal phase shifts, 

which decreases reef rugosity, and subsequently reduces the biodiversity and ecological 

capacity of the reef system. Coral bleaching is famously induced by high water 

temperatures and irradiance65,66. Baker et al. (2008) indicate that warm, shallow, low-

flow reefs are high-risk locations for coral bleaching, which should predict Kāneʻohe Bay 

as a likely target for coral bleaching events62. However, until recently, coral bleaching 

has been a historically rare event throughout the Hawaiian Islands, including Kāneʻohe 

Bay67. 

Study Site 
Kāneʻohe Bay, located on the NE side of O‘ahu, Hawaiʻi is the largest sheltered 

body of water in the main Hawaiian Islands, and is characterized as a shallow, near-shore 

marine environment with well-developed fringing reefs and 57 distinct patch reefs 

(Figure 2.1)68. 

 Mōkapu Peninsula and a barrier reef create a low-wave energy, low-flow 

environment punctuated by two deeper channels at the North and Middle/South ends of 

the bay. While the channels and water-flow over the barrier reef at high tide provide 

sources of water exchange within the bay, wave forcing is the predominant circulation 

method for Zones 1-5 (Figure 2.1)69.  
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2015 Bleaching event 
 High irradiance, and subsequent high atmospheric and water temperatures 

characterize summer months in Kāneʻohe Bay38,70. In some instances, low winds coincide 

with high irradiance to push water temperatures above 30°C, leading to increased 

potential for coral bleaching39. Only three major bleaching events have been documented 

in Kāneʻohe Bay, with two of the most recent events occurring during consecutive 

summers of 2014 and 2015. Temperature models confirm that abnormally high sea 

surface temperature (SST), potentially caused by the Pacific Decadal Oscillation (PDO), 

was present around Hawaiʻi during these times. The September 2014 event was the most 

severe bleaching event documented in the Hawaiian Archipelago to date68. Bleaching 

intensity was variable throughout Kāneʻohe Bay, with higher bleaching intensity seen 

toward the north end of the bay39. Coral recovery after the 2014 bleaching event was high 

within Kāneʻohe Bay, with the exception of  reefs affected by a freshwater kill that 

occurred in July 2014, where recovery has been slow to nonexistent67.  Widespread coral 

bleaching was recorded again throughout Kāneʻohe Bay between the months of August 

and October 2015, again with high recovery throughout the bay (personal 

communications, Raphael Ritson-Williams, Keisha Bahr).  

Water Quality 
The Kāneʻohe watershed receives high levels of precipitation and is a highly 

productive area for agriculture68. The fertile nature of the surrounding coastline and the 

relatively high human populations it has sustained for the past 700 years have subjected 

Kāneʻohe Bay to a long history of impacts from natural and anthropogenic stressors. The 

creation of channelized streams has exacerbated the rates and volumes at which coastal 

runoff enters the bay71,72. The impacts of these stressors on Kāneʻohe Bay corals have 
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been studied extensively68,73. Both Hunter & Evans (1995) and Bahr et al. (2015) 

document how local stressors such as sedimentation, nutrient input, and freshwater have a 

significant impact on coral health in Kāneʻohe Bay67,73. Additionally, studies have shown 

that polluted conditions have been linked to reduced rates of coral recovery and 

subsequent overgrowth by benthic competitors after acute events54,74.  

Freshwater Stress 
Due to its partially estuarine nature, portions of Kāneʻohe Bay in close proximity 

to shore may be significantly impacted by seasonal weather patterns. The wet season, 

which generally runs from October through May, is characterized by lower temperatures, 

increased rainfall, and higher cloud cover75. Prolonged periods of rain and high cloud 

cover can yield sharp, localized drops in salinity, and have been shown to cause severe, 

highly localized mortality events on Kāneʻohe Bay patch reefs in close proximity to 

stream mouths54,68,73. In late July 2014, an intense rain event caused a localized drop in 

salinity to ~15 ppt, which triggered localized mortality on patch reef areas adjacent to 

point-source outflows68. During normal rain events, an increase in coastal runoff volume, 

which may include a six-fold increase in sediment and nutrient input, can cause 

physically- and chemically-mediated coral stress58,76,77. Therefore, rain events can have 

numerous possibly synergistic negative impacts on coral health.  

Sedimentation  
Sedimentation rates can fluctuate drastically in conjunction with precipitation 

levels. When exposed to high rates of sedimentation, corals produce increased amounts of 

mucus to facilitate the removal of sediment from the colony surface, known as mucus 

sloughing. Increased production of mucus reduces energy availability for other functions 

such as growth, disease defense, and reproduction26. Additionally, sediment-smothering 
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and mucus sloughing reduce the ability of the coral host to absorb dissolved and 

particulate organic and inorganic nutrients from the water column27. Studies have shown 

that energy expenditure surpasses energy acquisition when sedimentation rates surpass 

2000 g m-2 day-1 78,79. Toguchi et al. (1982) estimated that annual sedimentation rates of 

non-terrestrial particulates in Kāneʻohe Bay are ~0.49 g m-2 day-1 80. Given that these 

measurements do not include terrestrial sedimentation rates, it is reasonable to assume 

that total sedimentation rates on Kāneʻohe Bay patch reefs are higher than 0.5 g m-2 day-1, 

and may reach 2000 g m-2 day-1 during heavy storm events. Therefore, the impact of 

sedimentation, while being a prominent chronic stressor, may only impact reefs at acute 

time scales. Although sedimentation is known to negatively impact the health of corals, it 

has been suggested that reduced solar irradiance either via high cloud cover or moderate 

turbidity from low levels of chronic sedimentation may help prevent severe coral 

bleaching and improve recovery rates of bleached corals81,82.  

Nutrients 
Populated coastal areas produce nutrient-rich runoff that originates from sources 

such as agricultural and residential fertilizers, septic tanks/cesspools, and freshwater 

seeps73. In a mechanism similar to that of sediment and freshwater transport, nutrient 

levels in Kāneʻohe Bay can vary greatly depending on precipitation levels. In periods of 

consistent or high rainfall, nutrient levels can increase rapidly. High nutrient 

environments can promote algal growth67,83, coral disease84, and bleaching85. 

Additionally, high nutrient environments can reduce coral fecundity, fertilization rates, 

embryo development9,86. Studies have also shown an increase in symbiont density and a 

reduction in coral growth rates in relation to increased nutrients due to the increased 

allocation of photosynthetic energy devoted to algal growth instead of host growth87. 
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Clearly, nutrient input can be classified as a coastal stressor that impacts reef ecology and 

coral physiology. Therefore, the added stress associated with the presence of elevated 

levels of nutrients in a coastal reef system such Kāneʻohe Bay has the potential to impact 

coral bleaching dynamics. However, similar to the other coastal stressors, levels of 

nutrients may differ among patch reefs due to the varying physical and anthropogenic 

forces present in Kāneʻohe Bay.  

Local stressors can vary extensively between different sections of Kāneʻohe Bay 

due to heterogeneous residence times and non-uniform human population 

distributions73,88. Residence times within the bay are defined by six distinct areas in Lowe 

et al. (Figure 1) 68. Zones 1 and 4 have low residence times of ~1 day, while Zones 2, 3, 

and 5 have residence times of ~6, ~3, and ~10 days, respectively89.  

While Zones 1 and 4 have low residence times, the proximity of Zone 4 to the 

coast, and adjacent stream mouths indicates that reefs in this zone would experience 

elevated, although temporary, levels of coastal runoff in comparison to Zone 1. Similarly, 

reefs in Zone 5 should experience higher levels of costal runoff than reefs in Zone 2 or 3, 

and due to the higher residence times in this zone, Zone 5 patch reefs likely experience 

elevated coastal stressor conditions for longer periods than Zone 4. However, because 

Zone 4 receives ~60% of the total freshwater runoff released by Kāneʻohe Bay 

watersheds, reefs in Zone 4 may be exposed to more extreme runoff conditions than Zone 

5 reefs, but on shorter time scales88.  

Low residence times increase the delivery of primary productivity and 

heterotrophic feeding in addition to enhancing rates of coral tissue recovery as high water 

flow removes waste products and increases plankton prey availability90,91. Given the 
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heterogeneous nature of flow regimes, and therefore local stressors throughout Kāneʻohe 

Bay, it is logical to expect corals in different flow regime zones to experience varying 

exposure to coastal stressors, therefore eliciting a heterogeneous bleaching response to 

temperature stress throughout Kāneʻohe Bay. 

Currently, there are no published studies that quantify the spatial distribution of 

coral bleaching on patch reefs between flow regime areas. This paper aims to explore 

how the spatial distribution of coral bleaching within and between patch reefs varies in 

response to coastal stressor gradients, ranging from high exposure to low exposure. This 

will involve quantifying the spatial distribution of coral bleaching and live coral cover in 

response to varying levels of nutrients, sedimentation rates, and salinity fluctuations 

between and within Kāneʻohe Bay patch reefs during the 2015 coral bleaching event.  

In order to investigate this topic, we targeted four patch reefs, each located in a 

different flow regime zone within Kāneʻohe Bay. Patch Reefs 44, and 25 are located in 

Zones 4 and 5 respectively and are designed to represent reefs that are exposed to higher 

levels of coastal stressors. Although there are no patch reefs located in Zones 1 or 2, 

Reefs 42 and 20 are located on the “buffer zones” between 4 and 1, and 5 and 3 

respectively, and should offer contrasting environmental conditions to Reefs 44 and 25 

while minimizing distances between reefs (Figure 2.1). Each of the four reefs has varying 

sizes and estimated coral cover (Table 2.1). It is important to note that for over 30 years, 

introduced Kappaphycus/Eucheuma macroalgae dominated many patch reefs in 

Kāneʻohe Bay, including Reef 4492. Out of the targeted reefs, only Reef 44 experienced 

significant algal cover until the 2014 freshwater kill in caused mass mortality of coral, 

algae, fish, and invertebrates on portions of the reef67. Over the past year, Reef 20 has 
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experienced colony-wide protein losing cytopathology, which impacted four reefs 

adjacent to and south of the sandbar in mid-bay93. The disease was first documented early 

February and last seen in late March 2015. It is important to note that this reef is adjacent 

to a sandbar region that is a popular recreation destination for many boaters. Several boat 

scars have been documented on this reef, and it is not uncommon for boaters to leave 

trash and other pollutants in the area. 

Coral Bleaching Survey Techniques 
Current in situ reef survey methodologies are time, money, and labor-intensive, 

making regular surveys of large reef areas unfeasible. While in situ surveys are important 

for collecting single animal or colony information, these methods usually collect 

categorical data, which are ineffective for understanding fine-scale spatial dynamics in a 

larger context. Additionally, reef community structure is extremely heterogeneous over 

scales of centimeters to hundreds of meters13. Therefore, conducting an in situ assessment 

of a sample reef population is not necessarily be an accurate representation of the reef as 

a whole, which poses a problem for a study that requires detailed colony-level 

information across a large reef area.  

Remote sensing methods such as satellite imagery have contributed enormously to 

the characterization of coral reefs by providing otherwise unattainable large-scale reef 

information26. However, traditional remote sensing methods produce relatively low-

resolution images that do not provide sufficient colony-resolution data. Additionally, 

satellite and airborne data collection require an immense amount of planning, funding, 

time, and good fortune in order to collect clear images that are not obscured by 

atmospheric noise and water column turbidity.  
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While in situ and remote sensing techniques may be used to collect reef 

information at the two ends of the spatial spectrum, another methodology must be utilized 

to collect intermediate-scale reef information that captures colony- level information 

within the full-reef context . In order to obtain high resolution, large-scale reef data, 

aerial information must be collected at lower altitudes 

The recent production of commercial UASs (Unmanned Aerial Systems) has 

already begun to revolutionize the way scientists conduct conservation biology research. 

This technology provides an important middle ground between in situ and traditional 

aerial imaging methodologies, collecting high-resolution, continuous data that can 

observe coral reef dynamics at the colony level. UASs are cost effective (<US $2000), 

transportable, require minimal assembly, carry small, powerful sensors, and fly at low 

altitudes with a high degree of control under autonomous flight. UASs offer a viable 

alternative to traditional platforms for acquiring high-resolution remote-sensing data at 

lower cost, increased operational flexibility, and greater versatility. Small UASs (sUAS) 

are defined as fixed wing or multi-rotor aircraft that weigh less than 25 kg. and are flown 

without a pilot in the cockpit29,30.  

sUAS are currently used for various conservation studies such as wildlife surveys, 

wetland assessments, and coastal erosion assessments30,33–35. This innovative technology 

is still mostly unexplored in the field of coral reef ecology, and presents a unique 

opportunity to redefine the tools commonly used for shallow-water benthic studies. We 

utilized this technology to assess percent live, bleached, and paling coral cover of large 

areas of Kāneʻohe Bay patch reefs. 
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Methods 
At the time of preparing for this project in early 2015, there were limited options 

for low-cost, commercially available multi-rotor sUAS. The DJI Phantom 2 was a 

suitable platform because it had a flight time of over 15 minutes, could hold a 3-

dimensional gimbal and 12 megapixel (MP) RGB sensor, and had flight-planner 

capabilities. The 3-dimensional gimbal keeps the camera level on three axes, allowing for 

smooth, stable, imagery collection regardless of the pitch and yaw of the moving 

platform. A GoPro Hero 3 was a suitable RGB sensor due to its small size, light weight, 

and capability to collect 12 MP images. The GoPro was fitted with a circular polarizer to 

reduce glare artifacts as much as possible. DJI produced a free, compatible flight planner 

for iOS or Android tablets that enabled the pilot to create up to 16 waypoints per flight on 

a satellite map-layer interface. Waypoints could be manually adjusted for location, 

height, time spent at waypoint, platform orientation, and speed between waypoints.    

Using this array of hardware and software, we collected individual, overlapping 

aerial images of each patch reef at an altitude of 15-20 m. Maximum flight time for the 

DJI Phantom 2 was ~15 minutes per battery. Due to this constraint, the UAV was 

programmed to fly at 5 m s-1, which resulted in full reef coverage requiring between 0.5 

and 5 batteries, depending on reef size.  

Pre-flight procedure  
Prior to conducting the UAS assessment, it was important to establish ground 

control points (GCPs) in order to obtain accurate geospatial information for post 

processing steps. Five floats and four L-shaped PVC pipes were distributed across the 

reef periphery. The floats and PVC pipes were used as the GCPs and were easily visible 

from the UAS. The PVC pipes were 0.34 m × 0.34 m with red, green, and blue tape on 
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each arm for colorimetric and additional scale calibrations. GPS coordinates of the GCPs 

were recorded with a recreational-grade GPS unit (Garmin GPSMap 76cx) and were used 

for georeferencing the orthomosaics during post processing.  

Flight Operations 
All four UAS reef assessments were conducted from the bow of a 17-ft Boston 

Whaler between 0830 and 1000 hrs. (HST). Early-morning flights were desired to reduce 

glare hot spots produced by direct overhead sunlight. The boat was anchored on the 

leeward side of each reef during UAS operations. The pilot launched the aircraft while 

the spotter initiated the flight plan on the tablet. The waypoints were programmed in a 

lawn-mower pattern, allowing the sensor to travel over the reef, collecting still imagery at 

sufficient overlap in the x and y direction for the post processing mosaicking workflow. 

The GoPro Hero 3 sensor had a field-of-view of 94° and 120° in the x and y direction 

respectively, in the “Wide” setting, and at 20 m altitude, the flight paths needed to be 15-

20 m apart, traveling at a maximum of 5 m s-1 in order to collect sufficient overlap in the 

x and y direction. The pilot visually monitored the aircraft while holding the remote 

control and the spotter assessed flight progress with the tablet. When the survey lines 

were completed, the pilot regained manual control and brought the aircraft to the bow of 

the boat to be retrieved by the spotter. Before each flight, the proper authorities at Marine 

Corps Base Hawaii (MCBH) and Honolulu International Airport were notified of flight 

locations, platform, and time of flights in accordance with current FAA rulings at the 

time.  

Partial to complete areas of each targeted patch reef were collected during the 

bleaching event. Due to weather conditions, the ability to collect imagery of all reefs 

within a short time span was not possible. Imagery for Reef 44 was collected on August 
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23, 2015, while imagery for Reefs 42, 25 and 20 was collected between October 27 and 

October 29, 2015.  

Environmental Parameters 
 Water quality data were collected from single permanent stations on each of the 

four patch reefs. ~100 ml of surface water were collected within 5 m of each permanent 

station using 250 cc narrow-mouth Nalgene plastic bottles. Samples were collected at 

each reef every 2-3 weeks throughout the bleaching period of August to October. 

Samples were frozen for later phosphate and salinity analysis, and weather anomalies that 

could significantly impact water quality were recorded.  

Phosphate concentrations for each water sample (n=32) was determined using the 

molybdenum blue method as per Strickland & Parsons94. Salinity measurements for each 

water sample were conducted using an YSI 85: O2, Conductivity, Temperature and 

Salinity sensor with an accuracy of 0.01. Sediment traps were constructed of PVC pipes 

of uniform size, were capped on one end, secured to the permanent station at a depth of 

~2 m at each reef, and oriented so the opening was parallel to the water surface. PVC 

pipes were recovered and replaced every month. After removing organisms within the 

pipes with a coffee filter, the sediment was filtered using 0.2µm filter paper. The weight 

of the dried, filtered sediment was divided by the deployment days to determine an 

average daily sedimentation rate.   

In order to understand within-reef variation in coastal stressors, three additional 

sediment traps were deployed on opposite edges of each reef for a 30-day period. These 

sedimentation rates were used as a proxy to provide preliminary information about 

within-reef variability of coastal stressors as we assume sedimentation rate is relatively 

connected to coastal salinity and nutrient concentration.  
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Analysis 

Image processing 
After collecting the still RBG imagery, Adobe Lightroom was used to remove 

unnecessary images, calibrate images to remove wide-angle distortion, and standardize 

color between images. The single images were combined into mosaics using Agisoft 

Photoscan, which uses SfM algorithms to combine adjacent images within a scene to 

create orthomosaic models of a complete patch reef40. This is a cost-effective, 

computationally efficient technique that has been used successfully in various terrestrial 

aerial, and marine in-situ photogrammetry studies to produce accurate 3-D models of 

targeted substrate40–42,95. It is important to note that in order to produce high quality 

mosaics, SfM software generally requires a minimum of 60% overlap between single 

images in both the vertical and horizontal axis. This overlap is especially important if the 

images are not geo-tagged, and therefore cannot be positioned using image-specific GPS 

information. ArcMap was used to geo-reference each image mosaic to a map coordinate 

system using GPS information collected for the GCPs.  

Ground Truthing 
In situ ground-truthing was performed to evaluate the quality of the airborne 

imagery, utilizing both 1 m × 1 m photo-quadrats and 10-m-long photo-transects. The in 

situ photographs were not used for rigorous, statistical accuracy assessment, but rather for 

qualitative comparisons that highlighted the airborne imagery’s ability to resolve 

different benthic types (Figures 2.2-2.4).  

Image Classification 
Initially, we attempted to use automated classification schemes in ENVI and 

ArcMap, but due to the heterogeneity of color and shape of the coral species present, 
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classification results were not consistently accurate between reefs. Additionally, sand and 

bleached coral have similar reflectance values due to their similar “brightness” values 

from a 3-band, RGB sensor. Therefore using a color-dependent classification scheme did 

not prove suitable for differentiating between sand and bleached coral. 

Ultimately, image annotations were conducted manually in ArcMap. The polygon 

outline of each coral colony was digitized by hand and assigned one of three health 

states: paled, bleached, and full pigmented which we will refer to as “healthy”. Three 

Shapefiles were created, including one to store the polygons for each coral health state. 

Non-coral cover such a sand, rubble, and algae was not specifically cataloged, as these 

metrics were not relevant to the study.  

Spatial and Statistical Analysis  
To calculate coral cover metrics, all polygons for a given health state were 

dissolved into a single large polygon that contained all areas of that health state. This 

produced a total of three polygons; one each for bleached, paled, and fully pigmented 

coral. The area of each of these polygons was divided by total reef area to determine 

proportional cover for each coral heath state, as well as total coral cover per reef. 

A point layer of each individual polygon was created to conduct cluster analyses. 

We used the Spatial Autocorrelation Moran’s I tool within the Spatial Statistics toolbox 

to determine the spatial pattern of each health state on each reef.  We then used the 

Optimized Hot Spot Analysis tool in the spatial statistics toolbox to determine the 

location of high and low clumped areas of each health state on each reef (Figure 2.11 c & 

d 2.12 c & d, 2.13 c & d. 2.14 c & d).  

Statistical analysis of the environmental data was conducted using R v3.3.2 (R 

Core Team 2015). A Kruskal-Wallace test was used to assess differences of each 
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environmental stressor (salinity, sedimentation rates, phosphate concentration) between 

reefs. A linear mixed effects model (package lmerTest, Kuznetsova et al. 2015) was 

employed to identify which reefs have significantly different PO4 concentrations, as well 

as the magnitudes of the differences96. A 2-way ANOVA was used to assess differences 

in sedimentation rates within each reef. Beta regression analysis was used to determine 

relationships between coastal stressors and unhealthy coral cover using all environmental 

data time points, and isolating time points collected just before the sUAS surveys97. ENN 

metrics in FRAGSTATS (version 4.2) were used to determine spatial patterns between 

bleached, paled, and healthy coral colonies. Euclidean nearest neighbor (ENN) value is 

the distance (m) to the nearest neighboring patch of the same type and is based on 

shortest distance from cell center to cell center98. 

Results 

Between-Reef Environmental Variability 
A Kruskal-Wallace test for non-normal distributions showed phosphate is the only 

coastal stressor out of the three tested that significantly differed between reefs (p < 0.05). 

Pairwise comparisons revealed that phosphate values on Reef 44 were significantly 

higher than on Reefs 20 and 42 (p < 0.05 for both) by 62 and 42 nM respectively (Figure 

2.5). Though not statistically significant, Reef 44 had the largest variance in salinity, but 

not the lowest recorded value. Reefs 42 and 44 both had instances of very low salinity 

(<20 PPT). Daily mean temperatures from January to October 2015 varied significantly 

between all reefs except for Reefs 25 and 4499. However, due to the high sample size 

(n=901), pairwise tests show the average significant temperature variation between reefs 

as 0.0115°C, which is smaller than the accuracy range for the temperature logger 

(±0.53°C). Therefore, we considered temperature as constant between reefs for the 
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purposes of this study.   

Within-Reef Variability  
A 2-way ANOVA showed sedimentation rates did not differ significantly within 

each reef. The low variance of sedimentation rates at sites within Reef 20 signified 

relatively uniform sedimentation conditions throughout the reef while Reefs 42 and 44 

had larger variations between sites within each reef (Figure 2.6).  

Coral Health  
Coral health was originally categorized into three classes (bleached, paled, fully 

pigmented). However, for the stressor/coral cover analysis, coral health was reorganized 

into two categories (healthy and unhealthy) in order to maintain legitimate comparisons 

between reefs, as the Reef 25 date set lacked paled coral. Percent cover of unhealthy or 

healthy coral was not significantly correlated to the standard deviations of any coastal 

stressors (Figure 2.7). Percent covers of unhealthy and healthy coral were both 

significantly correlated with mean salinity (p < 0.05) and mean phosphate (p < 0.05) 

(Figure 2.8.     

Time Lags 
Salinity values collected right before the reef imagery were highly correlated with 

percent unhealthy coral cover (p < 0.05, R2 = 0.9811) (Figure 2.9).  

Spatial Statistics 
All reefs were classified as significantly clumped using Moran’s I spatial 

autocorrelation test (Table 3). ENN values differed significantly between reef (χ2 = 

399.68, df = 3, p < 0.001) and health type (χ2 = 1115.2, df = 2, p < 0.001). Variance 

between bleached ENN was visibly larger than healthy or paled, while there were 

minimal visible differences in ENN variances between reefs. Note the large tails on each 
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of the plots (Figure 2.11). The highest mean ENN values were found on bleached 

colonies at Reefs 20 and 42 while the lowest mean ENN values were found on healthy 

colonies at Reef 20. Reef 42 had the overall highest mean ENN values while Reef 20 had 

the lowest (Table 2.4).   

Discussion 

Coastal Stressors 
While assessing stressor variation between reefs, we determined that Reefs 42 and 

20 were exposed to significantly lower PO4 concentrations than Reef 44 (Figure 2.5). 

Considering Reefs 44 and 42 are located in high flow regimes while Reef 25 is located in 

the low flow regime, these results indicate possible finer-scale environmental differences 

that separate the ‘further from shore’ reefs (Reefs 20, 42) from the ‘closer to shore’ reef 

environment (Reefs 44, 25). However, the vast ranges in salinity, specifically the spikes 

of low concentrations on Reefs 42 and 44 (17.6 - 33.0, and 19.1 -33.1 ppt, respectively), 

indicate this environmental forcing can impact both ‘closer to shore’ and ‘further from 

shore’ reefs in this study54.  

There was no significant variability in sedimentation rate within each reef (Figure 

2.6). Although statistically insignificant, Reef 20 had visibly smaller variance between 

blocks (Figure 2.6), and insignificance may be the result of a small sample size. If so, 

Reef 20 may experience possible reef-wide heterogeneous exposure to other coastal 

stressors in comparison to other reefs in this study. This finding could be due to small 

reef size and close proximity to the fine-grained, sediment-rich sandbar, which could 

deposit low amounts of sediment across the reef during discrete high wind/wave events.  

Additionally, large variations and higher sedimentation rates within reefs were 

found on Reefs 44 and 42 (Figure 2.6). This result is encouraging considering the relative 
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large size of these two reefs would suggest that there should be some environmental 

variability within each reef. However, it also indicates that there may be two possible 

sediment sources. A reef further from shore such as Reef 42 can potentially experience 

this much sedimentation due to its close proximity to the sandbar, while Reef 44 

accumulates terrestrial sediment from the plume created by Kaʻalaea Stream. Based on 

this evidence, it would be useful to analyze sediment composition to gain an accurate 

view of fine-scale sedimentation dynamics within Kāneʻohe Bay. Additionally, there are 

some caveats to these results. Sediment data from non-permanent locations (b, c, d) were 

collected for a single, different month for each reef (Figures 2.11 c & d, 2.12 c & d, 2.13 

c, 2.14 c & d). While the permanent block (block a), which was collected for all reefs at 

the same time reduces this issue, variations in sedimentation rate between reefs could be 

an artifact of different environmental conditions between sampling months. For instance, 

an intense rain event during the collection month for Reef 42 may have produced a spike 

in sedimentation rates, while the lack of heavy rain events during the collection month for 

Reef 20 could have produced subdued sedimentation rates and a smaller variance (Figure 

2.6).  

Survey Methodology Comparison  
A variety of survey methods are currently used to collect reef data, and estimating 

coral cover based on a small survey areas risks inaccuracies due to the heterogeneous 

nature of coral reefs12. The State of Hawai‘i Division of Aquatic Resources (DAR) 

conducted a full assessment of Kaneohe Bay patch reefs in 2014 using in situ “snap 

assessment” techniques39. The snap assessment method, as described in Neilson et al. 

2014, collects coral cover observations across a large portion of reef area39. Although the 

DAR data were collected ~1.5 years prior to these sUAS surveys, the earlier data sets still 
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provide an interesting comparison between survey methods. The largest discrepancies in 

coral cover are between Reefs 25 and 20 (Table 2.5). Reef 25 is overrepresented by in 

situ surveys while Reef 20 is underrepresented. The discrepancy in Reef 25 coral cover 

values may be the result of high coral cover along the reef edge, which is difficult to 

capture via aerial imagery, and large rubble and sand patches across the shallow reef flat, 

which is mostly inaccessible to snorkelers (Figure 2.12 a & b). Alternatively, Reef 20, 

which is deeper, has a smaller sand patch on the reef flat and lower coral cover on the 

reef edge (Figure 2.11 a & b). It is also important to note that although the sUAS data are 

spatially continuous, some of the surveys did not cover complete reef areas. Noting this, 

it is interesting that the most similar coral cover values between in situ and airborne 

methodologies occurred on Reef 44, which has the largest area and has the lowest percent 

reef cover collected by sUAS surveys (Tables 2.1, 2.2). Further work could help 

determine the optimal reef survey area to increase coral cover accuracy with in situ 

methods.  

Coral Health Response to Coastal Stressors 
Variance in stressor levels does not explain differences in unhealthy or healthy 

coral cover between reefs, while mean salinity and phosphate concentrations are both 

significantly correlated to healthy and unhealthy coral cover (Figures 2.7, 2.8). The 

strong, negative relationship between mean salinity and percent unhealthy coral cover 

(Figure 2.8 d) supports previous work showing that exposure to low salinity conditions 

decreases coral resilience to thermal stress100.  Mean phosphate concentrations, which 

were used as a proxy for general nutrient stress, have a positive relationship with 

unhealthy coral cover (Figure 2.8 f). This supports other work that documents the 

negative impacts of nutrients (specifically phosphate) on thermal tolerance, prevalence of 
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disease, and early life history of corals55,85,101. Additionally, higher nutrient environments 

promote increased algal biomass and therefore coral-algal competition87,102. This can be 

demonstrated on Reef 44, which had significantly higher phosphate concentrations than 

two of the ‘further from shore’ reefs, had at least double the percent algal cover than the 

three other reefs until a recent freshwater event39,67.   

When assessing the environmental conditions in close temporal proximity to 

image collection, salinity has a strong negative correlation with cover of unhealthy coral 

(Figure 2.9). Apart from confirming previous results, the fact that short-term phosphate 

concentrations do not significantly influence unhealthy coral cover brings up interesting 

points. From a biological perspective, these results could be supported by conclusions 

from previous studies that document the impact of nutrient stress as chronic rather than 

acute52. Because salinity can be considered an acute stressor, it could show up as having a 

more significant impact on coral health on shorter time scales than nutrients67, 62. 

However, it should be noted that since salinity and phosphate data for this project were 

collected from surface water and surface water quality values can be highly variable, 

these values may not be representative of generalized, reef-wide environmental 

conditions at the coral-water interface88. While it is important to consider the high 

variability of surface water measurements at small temporal and spatial scales, these 

results could be showing important trends of temporal significance to coastal stressor-

coral health dynamics.  

Spatial Analysis  
While autocorrelation tests showed significantly clumped distributions for all 

reefs (Table 2.3), Reef 44 had the highest Z score, which signifies the most clustering of 

health types. This result is probably a product of several reef traits. First, Reef 44 has the 
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highest proportion of unhealthy (paled and bleached) coral (Table 2.2). Due to the 

inherent heterogeneity of color and texture between and within Kāneʻohe Bay coral 

colonies, it is harder to visually isolate individual healthy colonies than those that are 

paled or bleached. This yields a bias towards higher clumping values of paled and 

bleached coral, and less for healthy coral. Second, missing reef imagery (Figure 2.14) 

might produce an artificial clumping phenomenon between the two sections of reef that 

were actually imaged. Third, the larger reef size translates to a relatively small search 

threshold, which could also introduce artificial clustering artifacts, although it should be 

noted that the search threshold is determined automatically by the spatial autocorrelation 

analysis.  

ENN values were highly significantly different between both health type and reef 

(Figure 2.10). Bleached colonies had the largest mean distances between patches with 

highest values on Reefs 20 and 42 (Table 2.4). This is an interesting finding considering 

the high coral cover and healthy percent cover on each of these reefs. It would lead us to 

believe that on ‘healthier’ reefs, unhealthy coral is slightly more dispersed across the reef 

instead of clumped in specific areas.  However, considering the vast number of outliers 

for each plot, the results could be an artifact of oversampling due to the high number of 

patches used for this analysis (n = 16,522).  

General Conclusions 
 The environmental analyses showed that exposure to nutrients are significantly 

higher on ‘closer to shore’ reefs than ‘further from shore’ reefs, which supports the idea 

that environmental factors vary at smaller spatial scales than flow regime zones (Figure 

2.1). Both phosphate and salinity were significantly correlated with unhealthy coral 

cover, while only salinity was significant when looking at environmental data collected 
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just before coral data collection. This may show chronic phosphate presence and acute 

salinity stress promote increased coral bleaching cover during periods of uniform 

elevated temperature.  

A combination of several stressors is known to exert interactive effects on coral 

reefs, and promote a chronic decrease in coral resistance to acute stressors such as 

temperature52. In this case, it is possible that the acute influence of salinity compounded 

the stress caused by chronic nutrient exposure at Reef 44, resulting in increased bleaching 

and paling cover. Sedimentation rates did not prove to be a significant factor in this 

study. Average sedimentation at reef sites was higher than those found by Toguchi 

(1982) (~6 g m-2 day-1 vs. ~0.5 g m-2 day-1, respectively)33. However these sedimentation 

values are much lower than the 2000 g m-2 day-1 threshold that signifies the point where 

energy expenditure surpasses energy acquisition, which supports the lack of significance 

between sediment stress and unhealthy coral cover in this study31, 32. Alternatively, 

sediments can act as a nutrient source103. Therefore, it is possible that the higher 

sedimentation rates found on Reef 44 (which theoretically come from terrestrial origins) 

could be another potential nutrient input, impacting coral health in ways unseen by 

analysis performed in this study. Further sediment composition analysis is required to 

verify this idea.  

Limitations  
While assessing the results discussed above, it is important to understand and 

address the limitations of this study. Due to logistical and airspace issues explained 

below, reef imagery was collected at inconsistent time points. Imagery for Reef 44 was 

collected on 23 August 2015 while imagery for Reefs 42, 25, and 20 was collected on 

October 29 & 30. While it is possible for bleaching cover to change dramatically within 
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two months, coral bleaching in Kāneʻohe Bay mostly peaked at the end of August and 

remained constant before recovery started at the beginning of November (personal 

communication, Raphael Ritson-Williams). Imagery we collected of Reef 25 during 

August and October confirmed that, at least on Reef 25, there was no recovery between 

August and end of October, but rather a possible slight increase in bleaching cover. If we 

were to assume a similar bleaching/recovery trend for all four reefs, Reef 44, which 

already had the highest unhealthy coral cover in August, would be expected to have 

similar if not higher unhealthy coral cover in October. This would only strengthen the 

trends between coral health and environmental stressors found in this study, and therefore 

the temporal inconsistency in data collection does not substantially impact the studies’ 

outcome.   

 An important part of assessing coral health during a bleaching event is monitoring 

bleaching recovery. For this study, we collected imagery that represents single time 

points for each targeted reef. While this gives us an accurate snapshot of coral health 

during each survey, we do not have any information about rate of bleaching or recovery 

of all reefs. If possible, an ideal sampling strategy would have been to collect reef 

imagery on a monthly basis from May (one month before bleaching) through to January 

(after full bleaching recovery). This would have allowed us to follow fine-scale temporal 

and spatial bleaching dynamics across four reefs from healthy, to paling and bleaching 

through to post- recovery. Hindsight is 20:20. 

 Due to the small number of reefs sampled (n = 4) in this study, it is dubious to 

draw any firm conclusions from the coral health -environmental stressor analyses. 

Ideally, we would have included two more reefs located in south bay, which inhabit Zone 
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6 of the flow regime figure (Figure 2.1). Adding coral and environmental data from 

additional reefs would help increase the sample size to help us produce more concrete 

patterns of bleaching-coastal stressor dynamics. However, routine collections of 

environmental stressor data are time intensive. Additionally, since salinity and phosphate 

data are collected from surface water samples, increasing sampling locations may 

introduce more noise than useful data. To conduct a proper assessment of environmental 

stressor presence per reef, semi-permanent/permanent sensors located at reef-depth are 

required to collect continuous sedimentation rates, and phosphate and salinity 

concentrations at each reef. Unfortunately this technology is still not commercially 

available for phosphate sensors, and salinity sensors of this type are still prohibitively 

expensive for most studies.  

Increasing the number of target reefs surveyed is feasible with minimal effort due 

to the efficiency of sUAS surveys. However, there were other issues that prevented the 

inclusion of additional reefs. First, laws regarding sUAS operations within airport 

airspace were in flux, and the personnel we were required to contact before flights 

changed after our initial surveys. It took several months to develop a letter of agreement 

between Marine Corps Base Hawaii (MCBH) and the Hawaii Institute of Marine Biology 

(HIMB) in order to legally conduct sUAS operations in MCBH airspace under the new 

educational operations clause created by the FAA (Levy et al. in review). Also, weather 

limits “flyable” days and substantially restricts the amount of time per day to collect clear 

imagery (Levy et al. in review). Additionally, the current process used to classify reef 

imagery at a colony scale is extremely time intensive. Therefore, post-processing time 

and manpower availability is an important factor to consider when planning future sUAS 
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surveys.  

 The goal of utilizing sUAS to collect coral bleaching data was to get a 

comprehensive view of bleaching across entire patch reefs. However, due to 

inefficiencies inherent to the earlier sUAS used, it was challenging to acquire complete 

coverage of the larger patch reefs (Table 2.1, Figure 2.14). At the time of conducting 

these surveys, the UAV platform had a flight time of ~ 15 minutes, and a ground station 

that created inefficient flight paths that did not always provide sufficient overlap for 

structure from motion photogrammetry. While it was possible to exchange batteries 

between flights, larger reefs required more batteries that we had available. Additionally, 

the DJI 2 platform and GoPro Hero 3 sensor did not create geo-tagged images, which 

improve the accuracy and completeness. Current systems have longer flight times, more 

efficient, flight planners and geotagging capabilities that have dramatically increased the 

quality and range capabilities of sUAS surveys (Levy et al. in review). 

Conclusion  
	
Despite these limitations, spatial results from this study have provided a unique, 

comprehensive understanding of the extent, and distribution of bleached, paled, and 

healthy coral on four Kāneʻohe Bay patch reefs during the 2015 global coral-bleaching 

event. Environmental stressor analysis begins to investigate how the combination of 

chronic and acute stressors erodes coral resistance to thermal stress, which significantly 

impacts coral bleaching dynamics throughout the bay. However, due to the limitations 

identified here, this work highlights the need for further investigation into the impacts of 

coastal stressors and water flow on the health of Kāneʻohe Bay corals. Ultimately, this 

project has provided valuable insight into the relationships between Kāneʻohe Bay patch 
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reefs and coastal stressors at previously unexplored spatial scales, and demonstrates the 

effective use of sUAS surveys in the field of coral reef science.  
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TABLES 
	
Table 2.1. Patch reef area and coral cover. Excerpt from Nielson et al 23. 

Reef Area (m2) Estimated Coral Cover (%) 
44 47,068 33 
42 17,693 49 
25 23,331 24 
20 1,855 46 
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Table 2.2. Coral health categorized into percent healthy, unhealthy, and total coral cover by reef. 

Reef Unhealthy (%) Healthy (%) Total Coral 
Cover (%)  

Total Reef 
Cover (%) 

20 2.187000 97.77181 54.968349 100 
25 6.905260 93.09474 9.606696 78.5 
42 3.705461 96.29454 56.033920 94 
44 45.430007 54.56999 32.028950 52 
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Table 2.3. Z-scores and search thresholds of Moran’s I spatial autocorrelation test. 

Reef Z-Score Search Threshold (m) 
20 35.172 3.645 
25 31.506 9.805 
42 37.379 6.198 
44 65.684 3.721 
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Table 2.4. Mean patch ENN values by reef and coral health. Standout values are bolded. 

 Bleached Healthy Paled Average 
20 1.36 0.22 0.49 0.42 
25 0.94 0.40 NA 0.73 
42 1.70 0.34 1.11 0.90 
44 0.87 0.41 0.40 0.48 

Average 1.01 0.38 0.52  
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 Table 2.5. Patch reef coral cover comparing in situ and sUAS survey techniques. In situ data was collected 
by DAR from February-April, 2014 23. sUAS data was collected from August-October 2015.  Amount 
overestimated by in situ method is underlined. 

Reef Total Coral Cover 
(%) (sUAS)  

Estimated Coral Cover 
(%) (In situ) 

Difference 

44 32.03 33 0.97 
42 56.03 49 7.03 
25 9.61 24 14.39 
20 54.97 46 8.97 
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FIGURES 
 
 
 
 

 
Figure 1.1. UAS survey of Kaneohe Bay Patch Reef 44 at 20 m altitude on 1/20/2015. Total reef area 
47,000 m2. a) 35 m2 subset demonstrating colony-level resolution. b) Satellite imagery of same reef area. 
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Figure 2.1. Kāneʻohe Bay satellite imagery with an overlay of associated flow regime areas as described 
by Lowe et al. 2009. The four patch reefs targeted in this study are highlighted. 
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Source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics,
CNES/Airbus DS, USDA, USGS, AEX, Getmapping, Aerogrid, IGN,
IGP, swisstopo, and the GIS User Community
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Figure 2.2 Ground-truth verification of aerial imagery. a) Aerial Image taken of healthy coral and non-
coral substrate inside the 1m2 quadrat at 20 m altitude. b) Cropped aerial image to isolate the quadrat. c. In 
situ imagery of the quadrat. Note the insufficient image coverage of the in situ quadrat due to shallow reef 
depth. 
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Figure 2.3. Example of rubble/non-coral substrate. a) 1 m2 in situ quadrat. b) 1 m2 crop of aerial imagery 
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Figure 2.4. Comparison of aerial and in situ imagery to verify substrate class. a) Aerial image taken from 
20 m of healthy coral (top right) and dead coral/non-coral substrate (center). b) In situ imagery of the 
healthy coral and dead coral/non-coral substrate under the transect line. 
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Figure 2.5. Coastal stressor values between patch reefs. a) Salinity, b) Sedimentation rate, c) Phosphate 
concentration.  
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Figure 2.6. Within–reef coastal stressor values. a) Local variation in sedimentation rates by reef (p =  
0.0715). b) Local variation in sedimentation rates by block (p = 0.1992). 
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Figure 2.7. Beta model assessing Healthy and Unhealthy coral by the standard deviation of: a, d) salinity, 
b, e) sedimentation rate, and c, f) phosphate concentration respectively. 
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Figure 2.8. Beta model assessing Healthy and Unhealthy coral by mean: a, d) salinity, b, e) sedimentation 
rate, and c, f) phosphate concentration respectively. 
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Figure 2.9. Beta model assessing Unhealthy coral at the last time point before reef imagery was collected: 
a) salinity, b) sedimentation rate, c) phosphate concentration.  
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Figure 2.10. Assessing variance of EEN by health type and reef. 
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Figure 2.11. Spatial analysis workflow for Reef 20. Pixel size: 0.009 x 0.009 m. a) Reef mosaic with inset. 
b) Orthomosaic classified into three coral health states and non-coral substrate. c) Heat map of paled colony 
clusters with environmental sample station locations. d) Heat map of bleached colony clusters with water 
sample locations 
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Figure 2.12. Spatial analysis workflow for Reef 25. Pixel size: 0.033 x 0.033 m. a) Reef mosaic with inset. 
b) Orthomosaic classified into two coral health states, sand, and non-coral substrate. c) Heat map of 
bleached colony clusters with environmental sample station locations. 
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Figure 2.13. Spatial analysis workflow for Reef 42. Pixel size: 0.021 x 0.021 m. a) Reef mosaic with inset. 
b) Orthomosaic classified into three coral health states and non-coral substrate. c) Heat map of paled colony 
clusters with environmental sample station locations. d) Heat map of bleached colony clusters with water 
sample locations. Water sample station C was located beyond extent of reef imagery. 
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Figure 2.14. Spatial analysis workflow for Reef 44. Pixel size: 0.007 x 0.007 m. a) Reef mosaic with inset. 
b) Orthomosaic classified into three coral health states and non-coral substrate. c) Heat map of paled colony 
clusters with environmental sample station locations. d) Heat map of bleached colony clusters with water 
sample locations. Water sample station C was located beyond extent of reef imagery. 
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